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ABSTRACT
In humans, most of the genetic variation is rare and
often population-specific. Whereas the role of rare
genetic variants in familial monogenic diseases is firmly
established, we are only now starting to explore the
contribution of this class of genetic variation to human
common diseases and other complex traits. Such large-
scale experiments are possible due to the development
of next-generation DNA sequencing. Early findings
suggested that rare and low-frequency coding variation
might have a large effect on human phenotypes (eg,
PCSK9 missense variants on low-density lipoprotein-
cholesterol and coronary heart diseases). This
observation sparked excitement in prognostic and
diagnostic medicine, as well as in genetics-driven
strategies to develop new drugs. In this review, I
describe results and present initial conclusions regarding
some of the recent rare and low-frequency variant
discoveries. We can already assume that most
phenotype-associated rare and low-frequency variants
have modest-to-weak phenotypical effect. Thus, we will
need large cohorts to identify them, as for common
variants in genome-wide association studies. As we
expand the list of associated rare and low-frequency
variants, we can also better recognise the current
limitations: we need to develop better statistical methods
to optimally test association with rare variants, including
non-coding variation, and to account for potential
confounders such as population stratification.

INTRODUCTION
There is nothing as mysterious as the unknown.
This is also true in genetics. For this reason, scien-
tists sequenced the human genome more than a
decade ago.1 2 The aims of the Human Genome
Project were to gain insights into the organisation
of our genome, but also to understand the role of
genetic variation in human diseases and other
traits. We have made tremendous progress in
assigning functions to each of the ∼3.3 billion
nucleotides that constitute our genetic code,
although much work remains.3 By comparing our
genome sequence with the sequence of other
species, we are also starting to learn why we,
humans, are different. And by analysing the
genome sequence of different human populations,
we are beginning to unravel how our genome
impacts our phenotypes, including our risk to
develop diseases. In this article, I briefly review the
types of segregating genetic variation detected in
the human genome, with an emphasis on the char-
acterisation of rare and low-frequency sequence
variants (figure 1). I arbitrarily define variants with
a minor allele frequency (MAF) <0.1% as rare,
whereas low-frequency and common variants have

MAF of 0.1%–1% and >1%, respectively. My
main aim is to draw conclusions on our early suc-
cesses in order to guide the design of better studies
to find genetic associations between rare or low-
frequency variants and human complex pheno-
types. Although clearly important, I do not discuss
the role of de novo or somatic mutations in human
phenotypical variation, nor will I extensively
describe the different statistical methods specific to
the analysis of rare variants. These topics have been
recently discussed in excellent review articles.4–7

THE HUMAN GENETIC VARIATION THAT WE
(THINK WE) UNDERSTAND
Over the last 40 years, positional cloning, linkage
studies and DNA sequencing allowed investigators
to identify hundreds of mutations responsible for
rare human diseases that follow Mendel’s laws of
inheritance. These mutations, along with the corre-
sponding genotype–phenotype correlations, are
extremely well documented in the National Center
of Biotechnology Information’s Online Mendelian
Inheritance in Men database (OMIM; http://www.
omim.org/). Thanks to the development of next-
generation DNA sequencing (NGS) technologies,8

Mendelian genetics continues to be in the front-line
of research, with weekly reports of new genes
mutated in rare human disorders or syndromes. In
particular, whole-exome sequencing (WES) makes
it possible to identify aetiological mutations for
extremely rare diseases even in the absence of pedi-
grees, a major limitation for the linkage approach.9

Until recently, the genetic causes of common
human diseases (eg, diabetes, myocardial infarction)
and other complex traits (eg, height, blood choles-
terol levels) also remained a mystery. The seminal
theoretical work by Fisher, published in 1918, pre-
dicted what geneticists should be looking for: a large
number of genetic variants, each with a very small
effect on phenotypes.10 But it took ∼90 years before
we could combine conclusions from ground-breaking
work on the patterns of common genetic variation in
the human genome11–16 with new genome-wide
genotyping technologies to tackle complex trait gen-
etics. We have now identified genetic associations
between thousands of ‘common’ bi-allelic SNPs and
human phenotypes.17 18 These genome-wide associ-
ation studies (GWAS) have yielded new insights into
human biology in health and diseases. Translating
these GWAS discoveries is the next frontier. With
novel tools (eg, TALEN and CRISPR/Cas9 genome
editing methods19 20) and resources (eg, epigenomic
data from the ENCODE and Roadmap Epigenomic
Projects21 22 and transcriptomic data from
FANTOM523 24) available, wet-lab experimentalists
can now make significant progress to understand
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the molecular mechanisms that drive human phenotypical
variation.

When comparing two human genomes, most of the differences
in terms of nucleotide changes reside not at SNPs but in large
(>1 kilobase) structural variants, such as insertions, deletions
and duplications.25 Improvements in array and sequencing tech-
nologies helped to generate accurate, single base resolution maps
of these copy number variants (CNVs).25 26 The excitement and
expectations were high regarding the potential influence of
CNVs on human phenotypes. Investigators identified associa-
tions of CNVs with complex human diseases and traits, including
neurocognitive disorders,27–29 Crohn’s disease30 and body mass
index,31 32 but the number of such associations remained low.
This is, in part, due to the technical difficulty in obtaining accur-
ate CNV genotypes in large populations.33 In a study that tested
3432 CNVs for association with eight common human diseases
in ∼19 000 participants, the Wellcome Trust Case Control
Consortium did not report novel associations.33 An important
conclusion of that study, however, is that most common CNVs
are in LD with SNPs normally surveyed by genotyping arrays.33

Therefore, current large meta-analyses of GWAS results test indir-
ectly the effect of a large subset of common CNV on human
phenotypical variation. Although there is probably more than
meets the eye, and this may change as we explore further our
genome, the current role of common structural variants in
complex human diseases and traits appear limited.

RARE AND LOW-FREQUENCY VARIANTS: WE KNOW THEY
EXIST, BUT WE DON’T REALLY UNDERSTAND THEM (YET)
One of the main conclusions of the 1000 Genomes Project is
that that most of the genetic variation in our genome is rare and

private to the different human populations.15 16 Despite remain-
ing challenges (table 1), studying rare and low-frequency var-
iants is the new hype in human genetics for at least three
reasons. First, despite its success in finding thousands of SNP
associations, the GWAS approach has not yet identified most of
the genetic variation that contributes to disease risk of trait vari-
ation—the so-called missing heritability paradox.34 Although
theoretical and empirical analyses have determined that a large
fraction of the heritability is not missing but, in fact ,hidden in
GWAS results,35 36 it is also true that rare and low-frequency
variants, which are usually not tested by genome-wide genotyp-
ing arrays, could influence phenotypes. The identification of
rare coding variants can also help pinpoint which genes are
causal within GWAS loci. Second, early findings in rare variant
genetics suggested that this class of variation might have large
effects on phenotypes.37 This is intuitive: the frequency of
strong detrimental alleles should be controlled by purifying
selection and is also consistent with the observation that most
common SNPs identified by GWAS have weak effects. The
poster child example of this rationale is the identification of low-
frequency missense variants in PCSK9 that are associated with
low low-density lipoprotein (LDL)-cholesterol levels and
reduced coronary heart disease risk.38 This finding led to the
development of a new class of therapeutics to treat patients with
hypercholesterolaemia, paving the way for similar approaches
following genetic discoveries.39 As we will discuss below, it
seems that the large phenotypical effect observed for PCSK9
coding variants is more an exception than the rule. In fact, the
weak phenotypical effect observed for many rare variants is con-
sistent with early population genetic work. By considering
mutations that cause Mendelian diseases, human–chimpanzee

Figure 1 Human genetic variation,
phenotypical effect and genomic
technologies. A summary of some of
the genetic variation in our genome
that has been associated with human
common diseases and complex traits.
The role of repetitive sequence
variation and weak effect rare variants
in complex trait genetics is still
unclear. The different technologies
most often used to detect each class
of genetic variation are shown. Indel,
insertion–deletion; CNP, copy number
polymorphism; CGH, comparative
genomic hybridisation; GWAS,
genome-wide association studies.
Adapted from McCarthy et al [82].
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divergence and DNA sequence data in a large number of indivi-
duals, investigators showed that most rare missense mutations
are deleterious in humans and may therefore influence complex
human phenotypes. However, the estimated selection coeffi-
cients that best fit the data are small, suggesting that most rare
deleterious missense variants have small effects on fitness.40 And
finally, from a more practical point of view, rare variant experi-
ments in large DNA collections are only now becoming possible
with NGS technologies. It does remain expensive and analytic-
ally complicated, but NGS is mature. Several large-scale sequen-
cing projects are now ongoing or completed, such as the Exome
Sequence Project that surveyed genetic variation in the exome
of 6515 cohort participants.41

Initially, DNA resequencing efforts to find rare variants were
targeted to candidate genes. These genes were selected based on
previous molecular, cellular or genetic (Mendelian diseases,
GWAS results) knowledge. Such approach was proven to be suc-
cessful for blood lipid traits,38 42–44 but also for other pheno-
types such as type 1 and 2 diabetes,45 46 fetal haemoglobin
levels47 and age-related macular degeneration (AMD).48 49 A
main challenge when sequencing excellent candidate genes per-
tains to distinguishing pathological from neutral mutations. Two
recent studies sequenced genes implicated in diabetes and cardi-
omypathies and identified a large number of non-synonymous
variants in healthy individuals, highlighting the difficulty in
using this genetic information to develop prognostic tests.50 51

Validating functionally the impact of DNA sequence variants
identified remains a priority, and a series of guidelines to dem-
onstrate causality in genotype–phenotype analyses was recently
proposed.52

Except for neurocognitive disorders, for which NGS has
implicated de novo variants,6 there are currently few examples

of WES or whole-genome sequencing (WGS) experiments that
have identified rare or low-frequency variants associated with
complex human diseases or traits. WES of 91 patients with
cystic fibrosis (a monogenic disease) identified missense variants
in DCTN4 that are associated with resistance to Pseudomonas
aeruginosa infections (a complex trait).53 WGS in 962 partici-
pants did not identify new genetic association with high-density
lipoprotein-cholesterol,54 whereas WES in 2005 individuals
found rare variants in one gene, PNPLA5, that are associated
with LDL-cholesterol.55 In the cystic fibrosis and
LDL-cholesterol studies, 91 and 554 individuals were selected
from the extremes of bacterial resistance and LDL-cholesterol
levels, respectively. Under an additive genetic effect model, this
‘extreme’ study design increases statistical power to find variants
while limiting the number of samples to sequence.56

There is one example where WGS has been successful for
common human diseases. The Iceland-based deCODE genetics
company has reported several associations between strong effect
rare/low-frequency variants identified by WGS and diseases.
These include variants in TREM2 and APP associated with
Alzheimer’s disease,57 58 a nonsense variant in LGR4 with
osteoporosis,59 a variant in C3 with AMD60 and several variants
with type 2 diabetes.61 Importantly, other investigators have
replicated some of the associations with Alzheimer’s disease,
AMD and type 2 diabetes.48 49 62–64 For all these findings,
deCODE’s approach was similar: they identified genetic vari-
ation in the Icelandic population by WGS of ∼2000 partici-
pants. Then, they imputed the identified genetic variants using
long-phase haplotyping methodology in ∼90 000 participants
genotyped on GWAS-type arrays. Finally, they used the exten-
sive genealogy of this population to infer genotypes in
>250 000 individuals. Although the sample size of these studies

Table 1 Challenges in the analysis of rare and low-frequency variants in human genetics

Challenge Description

Technology Choice between next-generation DNA sequencing and genotyping arrays recently developed to capture rare/low-frequency coding variation.
Arrays are less expensive and easier to analyse, but are limited to known genetic variants—this might be more of a concern for experiments in
non-European populations. Sequencing is becoming more affordable, but still expensive and computationally intense. Sequencing candidate
genes, the whole exome or the whole genome will impact the class of genetic variation discovered and the multiple hypothesis burdens.

Study design Most published rare-variant association analyses have used unrelated individuals given the relative ease to assemble such experimental design.
For the same number of participants, a cohort of related individuals has less power to discover new genetic variants (given that fewer
independent chromosomes are tested) than a cohort of unrelated individuals. However, the allele frequency might be higher and the
phenotypical effect stronger, thus increasing power. Additional methodological work is needed to compare statistical power to find genetic
associations with rare/low-frequency variants in pedigrees vs unrelated individuals, in particular, in the context of gene-based tests.

Statistical analysis Minor allele frequency (MAF) impacts statistical power. For instance, under some assumptions (OR=1.5, α=5×10−8, population
prevalence=5%), we would need >400 000 individuals to have 80% power to find an association with a rare variant (MAF=0.1%). For a
common variant (MAF=10%), ∼4600 individuals would be sufficient. Furthermore, because the number of rare variants is higher than the
number of common variants in the human genome, the multiple hypothesis burdens for rare-variant association studies is higher, again
decreasing statistical power.Statistical tests that combine variants, for instance by gene, have been developed (recently reviewed in ref. 7),
although the optimal tests will likely depend on the specific genetic architecture of each phenotype.

Variant annotation Coding variants are more likely to have phenotypical effects, although a large fraction will be neutral. Bioinformatic tools have been developed
to prioritise functional variants, and thus decrease the signal-to-noise ratio, but they are imperfect.77 78 These tools often also ignore
non-coding variants. Private rare non-coding variants can cause Mendelian diseases.79 Although there are only few (if any) examples of rare
non-coding variants associated with complex human traits, they probably exist but we have not carefully looked for them yet. Ideally,
experimental validation should guide the selection of likely functional variants before association testing, although this is difficult to
implement using high-throughput methods.

Population stratification Following the original observation that current statistical methods (eg, principal component adjustment) cannot properly account for
population stratification of rare variants,65 a large number of reports have been published, although the optimal method is unclear. Inflation
due to population stratification of rare variants might also depend on the type of gene-based tests used.80 Ideally, having a large number of
genotyped or sequenced controls would allow ancestry-based matching with cases.81

Phenotypical variance
explained

The phenotypical variance explained by a variant depends on the effect size and the allele frequency. For rare variants to explain a large
fraction of the missing heritability, phenotypical effects would need to be high. Although this is the case for PCSK9 and a handful of other
genes that harbour penetrant rare alleles, most rare variants will likely have weak-to-modest effects. Using calculations based on empirical
data, a recent report suggests that the heritability explained by rare variants could be substantial (18%–84%) but that we would need a very
large sample size (>1 000 000 individuals) to find all the associated variants.
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is very large, the number of cases remains in the ‘normal’ range
for association studies: for instance, there were 1143 and
11 114 cases in the recent AMD and type 2 diabetes studies,
respectively.60 61 The high control-to-case ratio (45:1 for AMD,
24:1 for type 2 diabetes) improves power, although it stabilises
as the number of controls increases. deCODE’s successes are
also explained by the phenotypical, genetic and environmental
homogeneity of its participants, which minimises potential con-
founders. This might be particularly important for association
studies of rare and low-frequency variants.65 66 Further support-
ing the importance to work with homogenous populations, a
WES experiment in large families identified a rare missense
variant in PLD3 that is associated with late-onset Alzheimer’s
disease.67 The deCODE studies highlight that population iso-
lates and large pedigrees might be particular useful for rare and
low-frequency variant studies. Furthermore, imputing variants
into already genotyped samples might be a powerful approach
to minimise sequence costs while maximising power. Recently,
we used a similar strategy—WES in 761 African-Americans and
imputation in ∼13 000 genotyped African-Americans—to find
new associations with blood cell phenotypes.68

SEQUENCING BY DIRECT GENOTYPING
One of the conclusions from the early large-scale NGS experi-
ments is that we need large sample size to find new genetic asso-
ciations with rare or low-frequency variants. The variants
identified so far have large effect size—often OR >2—but we
have found only a handful despite having sequenced large
cohorts with different complex phenotypes available. And retro-
spectively, we probably have not performed to date well-
powered NGS experiments: we found large effect variants
because we only had power to find such variants. Based on our
few findings, it seems likely that most rare or low-frequency var-
iants will have modest-to-weak effect on phenotypes. But how
to test rare/low-frequency variants in tens of thousands of
samples?

Exome arrays were designed precisely to answer this need,
that is, to develop a tool that would allow large-scale testing of
coding variation in very large sample sizes at moderate costs
(<10% of what WES costs if we include analysis time). To
design the Illumina Infinium HumanExome Beadchip, investiga-
tors combined genetic variation identified by WES or WGS of
∼12 000 individuals and selected ∼250 000 variants for the
exome array (http://genome.sph.umich.edu/wiki/Exome_Chip_
Design). These variants have been seen at least three times in
two different studies and are highly enriched for protein altering
functions (missense, nonsense, splice site). Affymetrix has also
generated a similar exome array. Exome chips are convenient
because of their simplicity, but also have certain limitations.
First, many coding and all non-coding rare variants are not
tested by exome arrays. For an exhaustive analysis of this class
of genetic variation, direct DNA sequencing remains necessary.
Second, exome chips might not capture as well coding variation
in different populations. Most of the sequence data used to gen-
erate the genetic variation catalogue for the exome chip was
from individuals of European ancestry. Thus, exome chip
experiments in other populations might miss a large fraction of
the coding variation that is ancestry-specific or population-
specific. As a dramatic example, we recently sequenced the
exome of 164 African-Americans that were also genotyped on
the Illumina exome chip: 67% of the coding variation—mostly
very rare, however—was not surveyed by the exome array (Ken
Sin Lo and GL, unpublished). This is an important flag to
remember in deciding between NGS and exome chip

genotyping for experiments in non-European ancestry popula-
tions, especially because LD will not be helpful to tag variants at
such low MAF.

Genetic discovery experiments based on the exome array
approach already have some successes (table 2). The first report
focused on insulin processing and secretion in individuals from
Finland.64 The authors identified four missense and one non-
sense variants strongly associated with these insulin traits. Two
of these variants fell within, but were independent from, GWAS
signals for the same phenotypes; these low-frequency variants
implicate SGSM2 and MADD as causal genes for insulin secre-
tion (table 2). The three remaining variants did not overlap with
GWAS loci for insulin indexes. This study identified the same
variant in PAM (p.Asp563Gly) that was found to be associated
with type 2 diabetes risk by the deCODE group.61 Blood lipid
traits were also analysed in large populations genotyped on
exome arrays, leading to the identification of coding variation at
five loci (table 2).69 70 A low-frequency variant in TM6SF2 (p.
Glu167Lys) is associated with total cholesterol levels and
alanine transaminase (a marker of liver injury), as well as two
related clinical endpoints: myocardial infarction and non-
alcoholic fatty liver disease.70 71 This TM6SF2 variant explains
the GWAS signal for these phenotypes at the locus. Finally, we
used the exome chip to identify coding variants associated with
blood cell phenotypes in ∼30 000 Europeans or individuals of
European descent.72 We reported the first erythropoietin variant
associated with haemoglobin and haematocrit levels, a rare mis-
sense variant in the thrombocytopenia gene TUBB1 associated
with platelet count, and a collection of eight missense variants
in the chemokine receptor gene CXCR2 associated with white
blood cell counts (table 2). We further demonstrated that a
CXCR2 frameshift mutation segregating in a family is respon-
sible for congenital neutropenia.72 Several large consortia, with
access to exome chip genotype data for hundreds of thousands
of individuals, are in progress and should yield many additional
rare and low-frequency coding variants associated with human
phenotypes.

AND THERE IS THE PART OF OUR GENOME THAT WE
DON’T UNDERSTAND: REPETITIVE SEQUENCES
We often present NGS methods as a solution to all our genetic
problems given their unprecedented capacity to generate DNA
sequences. But we forget that a non-negligible fraction of our
genome—repetitive DNA sequences that cover over half of the
human genome—is largely refractory to this technology. Repeats
correspond to segments of DNA, almost identical, that can be
found at several locations and on different chromosomes. They
can be short (1–2 bps motif ) or long (several kilobases). The
transposon element Alu is our most abundant repetitive
sequence, representing ∼11% of the human genome.1 2

Variation in the number of repeats at specific loci has been
linked to many human pathologies, most notably the expansion
of triplet nucleotides in Huntington’s disease, fragile X syn-
drome, myotonic dystrophy and other disorders.73 From a NGS
perspective, repeats are problematic because the corresponding
sequence reads are usually too short and cannot be mapped
unambiguously. This introduces sequence errors and difficulties
in interpreting results.74

Medullary cystic kidney disease type 1 (MCKD1) is a
Mendelian disease that was mapped to a two megabases interval
on chromosome 1 by linkage studies more than a decade ago.
More recently, investigators used WES and WGS but did not
find mutations that segregated perfectly with disease status in
affected pedigrees. They eventually used ‘old-fashioned’

4 Lettre G. J Med Genet 2014;0:1–10. doi:10.1136/jmedgenet-2014-102437

Review

 group.bmj.com on September 4, 2014 - Published by jmg.bmj.comDownloaded from 

http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://genome.sph.umich.edu/wiki/Exome_Chip_Design
http://jmg.bmj.com/
http://group.bmj.com/


Table 2 New genetic associations between rare or low-frequency variants and human complex traits identified using the ExomeChip

Trait Population Sample size Gene Variant Minor allele frequency
Effect size (in SD
units) GWAS locus Reference

Insulin processing and
secretion

Europeans (Finland) 8229 SGSM2 rs61741902 (p.Val996Ile) 1.4% 0.41 Yes, but independent
from SNP

64

MADD rs35233100 (p.Arg766X) 3.7% −0.32 Yes, but independent
from SNP

TBC1D30 rs150781447 (p.Arg279Cys) 2.0% 0.50 No
KANK1 rs3824420 (p.Arg667His) 2.9% 0.28 No
PAM rs35658696 (p.Asp563Gly) 5.3% −0.21 No

Alanine transaminase
(a marker of liver injury)

EA, AA and HA 882 (EA), 1324 (AA),
467 (HA)

TM6SF2 rs58542926 (p.Glu167Lys) 7.2% (EA), 3.4% (AA),
4.7% (HA)

2.0 alanine
transaminase unit

Yes, explain the GWAS
signal

71

Blood lipids EA and AA 42 208 (EA), 14 330
(AA)

ANGPTL8 rs145464906 (p.Gln121Stop) 0.1% (EA), 0.01% (AA) 0.77 Yes, but independent
from SNP

69

PAFAH1B2 rs186808413 (p.Ser161Leu) 1.1% (EA), 0.2% (AA) 0.23 (HDL), −1.46 (TG) Yes, but independent
from SNPs

COL18A1 rs114139997 (p.Gly111Arg) 0.003% (EA), 1.9% (AA) 0.15 (HDL), −2.34 (TG) No
PCSK7 rs142953140 (p.Arg504His) 0% (EA), 0.2% (AA) 1.31 (HDL), −4.39 (TG) Yes, but independent

from SNPs
Europeans (Norway) 10 309 TM6SF2 rs58542926 (p.Glu167Lys) 8.9% −0.19 (TC) Yes, explain the GWAS

signal

70

Blood cell traits EA, French Canadians and
Europeans (Germany)

31 340 EPO rs62483572 (p.Asp70Asn) 0.4% −0.22 (HCT), −0.21
(HGB)

Yes, but independent
from SNP

72

TUBB1 rs41303899 (p.Gly109Glu) 0.2% −0.49 (PLT) Yes, but independent
from SNP

CXCR2 8 missense variants 0.005%–0.5% −0.23 (WBC) No

Otherwise noted, effect sizes are in SD units.
AA, African-Americans; EA, European Americans; HA, Hispanic Americans; HCT, haematocrit; HDL, high-density lipoprotein cholesterol; HGB, haemoglobin; PLT, platelet; SNP, single nucleotide variation; TC, total cholesterol; TG, triglycerides; WBC, white
blood cell; GWAS, genome-wide association studies.
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positional cloning, capillary sequencing and de novo assembly
methods to discover that MCKD1 is caused by a cytosine inser-
tion in one repeat of a variable number tandem repeat (VNTR)
in the MUC1 gene.75 The MUC1 VNTR, very guanine–
cytosine-rich, could not be sequenced by WES and was under-
represented in the WGS data. The identification of the causal
mutation for MCKD1 serves as an illustrative example in con-
sidering the challenges to analyse repetitive DNA sequences by
NGS. Whether such repeat sequence variation (common or
rare) could also impact complex trait genetics remains to be
tested.

CONCLUSION
Driven by the sequencing of the human genome and techno-
logical advancements, human geneticists have made great pro-
gress in the identification of genetic variation that cause simple
and complex human diseases or that influence other human
phenotypes. The new excitement in the field is in the character-
isation of rare and low-frequency variants, in part because such
variants might have larger phenotypical effects and might there-
fore be more clinically actionable than GWAS SNPs in the
context of personalised medicine and drug development.
Although there are clearly rare/low-frequency large-effect var-
iants, their number is likely going to be small given insights
from the completed studies. Large sample sizes are needed for
comprehensive studies of rare and low-frequency variants.
Other challenges include the development of new statistical
methods to test association between functionally related groups
of variants (gene-based, but could also be pathway-based,
promoter-based or enhancer-based) as well as to explore the
contribution of rare non-coding genetic variation on human
phenotypical variation. Finally, because rare variation is mostly
population-specific, it will be important to improve methods to
correct for confounders such as population stratification because
existing approaches are not appropriate.65 66 This is particularly
important to avoid some of the early pitfalls of the common
variant association testing the literature.76 The coming years
will mark another chapter in the history on the exploration of
our genome. It will be interesting to see how this rare/low-
frequency variant adventure contrasts with the previous chapters
on positional cloning, capillary sequencing and GWAS. And
how it may provide ideas and tools to study in the future repeti-
tive DNA sequences as it relates to human phenotypical
variation.
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